• 工作总结
  • 工作计划
  • 心得体会
  • 领导讲话
  • 发言稿
  • 演讲稿
  • 述职报告
  • 入党申请
  • 党建材料
  • 党课下载
  • 脱贫攻坚
  • 对照材料
  • 主题教育
  • 事迹材料
  • 谈话记录
  • 扫黑除恶
  • 实施方案
  • 自查整改
  • 调查报告
  • 公文范文
  • 思想汇报
  • 当前位置: 雅意学习网 > 文档大全 > 实施方案 > 正文

    反证法导案(教师)

    时间:2021-03-03 13:28:50 来源:雅意学习网 本文已影响 雅意学习网手机站

     反证法导案 利用 30 分钟左右预习课本第 66-67 页. 一、研究提纲 1.什么反证法?它与分析法有何区别?你能理解反证法的逻辑原理吗?

      2.用反证法证明数学命题时,一般是怎样的步骤?

      3.遇到什么样的命题时,会考虑用反证法去证明?

     二、自学反馈 第 67 页练习 A 三、典型例题 例 1.已知xyyxy x y x          1,1, 2 , 0 , 0 求证:

     中至少有一个小于 2.

     练习:1.已知数列  nb 的通项公式为13241 nnb .求证:数列  nb 中的任意三项不可能成等差数列.在用反证法证明该命题时,应反设

     . 2.否定“自然数 c b a 、 、 中恰有一个偶数”时的正确反设为( C

     ) A. c b a 、 、 都是奇数

      B. c b a 、 、 都是偶数 C. c b a 、 、 或都是奇数或至少有两个偶数 D. c b a 、 、 中至少有两个偶数 例 2.证明:钝角三角形最大边上的中线小于该边长的一半.

     例 3.已知平面 α 内有两条相交直线 b a, (交点为 P)和平面 β 平行,求证:平面 α ∥平面 β .

     例 4.设 p 是质数,证明 p 是无理数.

     四、巩固提高 1.已知函数 ) (x f 是 ) , (   上的增函数,且 R b a   , ,求证:若 ) ( ) ( ) ( ) ( b f a f b f a f           ,则 0    b a . 证明:∵a+b≥0,∴a≥-b. 由已知 f(x)的单调性得 f(a)≥f(-b). 又 a+b≥0⇒b≥-a⇒f(b)≥f(-a). 两式相加即得:f(a)+f(b)≥f(-a)+f(-b). 2.若关于 x 的三个方程 0 3 4 42        a ax x , 0 ) 1 (2 2        a x a x , 0 2 22      a ax x 中至少一个方程有实数解,求实数 a 的取值范围. 解:若三个方程均无实根,则有                   0 231121230 ) 2 ( 4 ) 2 (0 4 ) 1 (0 ) 3 4 ( 4 ) 4 (232 2221aa aaa aa aa a或

     123     a 。设 A=   123a x

     于是三个方程至少有一个方程有实根的实数 a 的取值范围为      123a a a A C U 或

      3.已知 b a, 是异面直线,直线 c 平行于直线 a ,那么 c 与 b 的位置关系为(

     )C A.一定是异面直线

      B.一定是相交直线 C.不可能是平行直线

      D.不可能是相交直线 4.设 S 是整数集 Z 的非空子集,如果 , , a b S   有 ab S  ,则称 S 关于数的乘法是封闭的. 若 T,V 是 Z

     的两个不相交的非空子集, Z V T   且 , , , a b c T   有 ; , , , abc T x y z V    有 xyz V  ,则下列结论恒成立的是(

     A

     )

     A. , T V 中至少有一个关于乘法是封闭的

      B. , T V 中至多有一个关于乘法是封闭的 C. , T V 中有且只有一个关于乘法是封闭的

      D. , T V 中每一个关于乘法都是封闭的 A.. C B, , V T, , } { V }, { T; D , V , T , } { V }, { T ,; T , , 1 , 1 , ,, , T, 1 , V T, 1 Z, V T :从而本题就选不对 故 的 显然关于乘法都是封闭 时 偶数 奇数 当不对 故 关于乘法不封闭 关于乘法封闭 时 负整数 非负整数 当 另一方面对乘法封闭 从而 即 则 由于则 不妨设 两个集合中的一个中 一定在 故整数 由于 解析                      T ab T b a T b aT b a 五、课堂小结 六、课后作业:

     课本 67 页练习 A-1,68 页练习 B-2,习题 B-1. 补充习题:

     1.设23 3   b a,求证2    b a. 2. q p . 2 , 0 0, p3 3      试用反证法证明:

     若 q p q

      2. q p 2 q p0 q - p. 0 ) ( 0 ) (, 2 ) )( ( : 2, q p2. q) pq(p6. q) 3pq(p 2. 8 3 3 ) (, 0 , 0 , 22 2 22 2 3 33 33 2 2 3 3                             不成立,故 假设相矛盾。

     )

     但这与(由上两式得:得 又由即。代入上式得:

     又证明:q p q pq p q p pqq pq p q pq pq pq q p p q pq p q p 2.已知 0    c b a , 0 , 0     abc ca bc ab

     ,求证:

     0 , 0 , 0    c b a . [证明] 用反证法:

     假设 a,b,c 不都是正数,由 abc>0 可知,这三个数中必有两个为负数,一个为正数, 不妨设 a<0,b<0,c>0,则由 a+b+c>0, 可得 c>-(a+b), 又 a+b<0,∴c(a+b)<-(a+b)(a+b) ab+c(a+b)<-(a+b)(a+b)+ab 即 ab+bc+ca<-a 2 -ab-b 2

     ∵a 2 >0,ab>0,b 2 >0,∴-a 2 -ab-b 2 =-(a 2 +ab+b 2 )<0,即 ab+bc+ca<0, 这与已知 ab+bc+ca>0 矛盾,所以假设不成立. 因此 a>0,b>0,c>0 成立. 3.求证:过两条平行线中的一条直线的所有平面,都与另一条直线平行或经过另一条直线.

     4.已知数列 } {na 满足:211  a , 111) 1 ( 21) 1 ( 3       nnnnaaaa, ) 1 ( 01    n a an n;数列 } {nb 满足:nb =2 21 n na a   ) 1 (   n .(1)求数列 } {na , } {nb 的通项公式; (2)证明:数列 } {nb 中的任意三项不可能成等差数列. 解:(I)由题意可知, ). 1 (3212 21 n na a    令 .32, 112n n n nc c a c   则

     又 ,43122 1   a c 则数列 } {nc 是首项为 ,431 c 公比为32的等比数列,即 1)32(43 nnc ,故 . )32(431 2 )32(4311 1 2        nnnna a

     又 . 0 , 0211 1  n n aa a

     故 . )32(431 ) 1 (1 1     n nna

     . )32(41] )32(431 [ ] )32(431 [1 1 2 21          n n nn n na a b

      (II)用反证法证明:

     假设数列 } {nb 存在三点 ) ( , , t s r b b bt s r  按某种顺序成等差数列,由于数列 } {nb

     是首项为41,公比为32的等比数列,于是有t s rb b b   ,则只可能有s r tb b b   2 2 成立, 1 1)32(41)32(41)32(412     t s t t, 两边同乘 , 2 3r t r t  化简得 . 3 2 2 2 3s t t s r t r t      

     由于 t s r   ,所以上式左边奇数,右边为偶数,故上式不可能成立,导致矛盾. 故数列 } {nb 中任意三项不可能成等差数列.

     5.已知 M 是由满足下述条件的函数构成的集合:对任意 M x f  ) ( ,①方程 0 ) (   x x f 有实数根;②函数 ) (x f 的导数 ) (xf 满足 1 ) ( 0    x f . (1)判断函数4sin2) (x xx f   是否是集合 M 中的元素,并说明理由; (2)集合 M 中的元素 ) (x f 具有下面的性质:若 ) (x f 的定义域为 D ,则对于任意   D n m  , , 都存在   n m x ,0 ,使得等式 ) ( ) ( ) ( ) (0x f m n m f n f     成立.试用这一性质证明:方程 0 ) (   x x f 有且只有一个实数根. 解:(Ⅰ)因为①当 0  x 时, 0 ) 0 (  f , 所以方程 0 ) (   x x f 有实数根 0; ② x x f cos4121) (    , 所以 43,41) (x f ,满足条件 1 ) ( 0    x f ; 由①②,函数4sin2) (x xx f   是集合 M 中的元素.

     …………7 分 (Ⅱ)假设方程 0 ) (   x x f 存在两个实数根      ( , ),则 0 ) ( , 0 ) (     β β f α α f . 不妨设    ,根据题意存在 ) , (    c , 满足 ) ( ) ( ) ( ) ( c f α β α f β f     .

     因为    ) ( f ,    ) ( f ,且    ,所以 1 ) (  cf . 与已知 1 ) ( 0    x f 矛盾.又 0 ) (   x x f 有实数根, 所以方程 0 ) (   x x f 有且只有一个实数根.

      …………14 分

    推荐访问:反证法 教师

    • 文档大全
    • 故事大全
    • 优美句子
    • 范文
    • 美文
    • 散文
    • 小说文章