• 学前教育
  • 小学学习
  • 初中学习
  • 高中学习
  • 语文学习
  • 数学学习
  • 英语学习
  • 作文范文
  • 文科资料
  • 理科资料
  • 文档大全
  • 当前位置: 雅意学习网 > 初中学习 > 正文

    [例析向量与解析几何的交汇问题] 向量代数与空间解析几何

    时间:2019-01-04 03:34:52 来源:雅意学习网 本文已影响 雅意学习网手机站

      向量这几年时间逐渐成为高考中的重要角色,很多时候向量与解析几何在一起,成为解析几何的一部分,但纵观与向量与解析几何的问题,不外乎以下几类。   第一类是可以转化为平面几何语言的;第二类是不可以或者转化比较麻烦;还有一类是平面几何背景问题,但是我们转化为用向量来解决比较方便。
      对于第一类和第三类,我们常常要进行转化,或是把向量问题转化为平面几何问题,然后用平面几何的知识和方法解决问题;或是把平面几何问题转化为向量问题,借助向量来解决平面几何问题。比较这两个方法,用向量来解决有以下优点:免去讨论斜率是否存在的问题;但用向量方法同时存在缺点:用向量会涉及到两个变量,常常会不利于求解。
      例题1.已知,是x,y轴正方向的单位向量,设=(x-)+y,=(x+)+y,且满足||+||=4。
      (1)求点P(x,y)的轨迹C的方程。
      (2)如果过点Q(0,m)且方向向量为=(1,1)的直线l与点P的轨迹交于A,B两点,当△AOB的面积取到最大值时,求m的值。
      解:(1)∵=(x-)+y,||=(x+)+y,且||+||=4。
      ∴点P(x,y)到点(,0),(-,0)的距离之和为4,故点P的轨迹方程为+y=1。
      (2)设A(x,y),B(x,y)依题意直线AB的方程为y=x+m,代入椭圆方程,得5x+8mx+4m-4=0,则x+x=-m,xx=(m-1)。
      因此,S=|AB|・d=。
      当5-m=m时,即m=±时,S=1。
      例题2.已知椭圆的中心在原点,离心率为,一个焦点是F(-m,0)(m是大于0的常数)。
      (Ⅰ)求椭圆的方程。
      (Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M。若||=2||,求直线l的斜率。
      解:(Ⅰ)设所求椭圆方程是+=1(a>b>0)。由已知,得c=m,=,所以a=2m,b=m。故所求的椭圆方程是+=1。
      (Ⅱ)设Q(x,y),直线l:y=k(x+m),则点M(0,km)。
      当=2时,由于F(-m,0),M(0,km),由定比分点坐标公式,得x==-,y==km。又因为点Q(-,)在椭圆上,所以+=1,解得k=±2。
      当=-2时,x==-2m,y==-km。
      于是+=1,解得k=0。故直线l的斜率是0,±2。
      例题3.(2004湖南文)如图,过抛物线x=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点。设点P分有向线段所成的比为λ,证明:⊥(-λ)。
      解:依题意,可设直线AB的方程为y=kx+m,代入抛物线方程x=4y得x-4kx-4m=0①设A、B两点的坐标分别是(x,y)、(x,y),则x,x是方程①的两根。所以xx=-4m。由点P(0,m)分有向线段所成的比为λ,得=0,即λ=-。又因为点Q是点P关于原点的对称点,故点Q的坐标是(0,-m),从而=(0,2m)。
      -λ=(x,y+m)-λ(x,y+m)
       =(x-λx,y-λy+(1-λ)m)・・(-λ)
      =2m[y-λy+(1-λ)m]
      =2m[+・+(1+)n]
      =2m(x+x)・
      =2m(x+x)・=0。
      所以⊥(-λ)。
      例题4.若+=5,求x+y的最小值。
      解析:构造向量=(,),=(1,1)。
      由・≤||||,得+≤・,
      即≥,∴x+y≥。
      当且仅当=时,x+y有最小值。
      变式:设x是实数,求+的最小值。
      解析:∵=,=,
      故可设=(x-1,1),=(5-x,3)。
      ∴|+|=4,+=||+||≥4。
      当=,即x=2时等号成立。
      所以当x=2时,+取最小值4。
    本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

    推荐访问:解析几何 向量 交汇

    • 文档大全
    • 故事大全
    • 优美句子
    • 范文
    • 美文
    • 散文
    • 小说文章