• 学前教育
  • 小学学习
  • 初中学习
  • 高中学习
  • 语文学习
  • 数学学习
  • 英语学习
  • 作文范文
  • 文科资料
  • 理科资料
  • 文档大全
  • 当前位置: 雅意学习网 > 小学学习 > 正文

    【立体几何中二面角的平面角的定位】立体几何二面角求法

    时间:2019-01-25 03:57:22 来源:雅意学习网 本文已影响 雅意学习网手机站

      空间图形的位置关系是立体几何的重要内容,解决立体几何问题的关键在于三定:定性分析→定位作图→定量计算,其中定性是定位、定量的基础,而定量则是定位、定性的深化,在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般来说,对其平面角的定位是问题解决的先决一步。
      例1.已知正三棱锥V―ABC侧棱长为a,高为b,求侧面与底面所成的角的大小。
      由于正三棱锥的顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,则∠VOC为侧面与底面所成二面角的平面角,如图。正因为正三棱锥的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使背景突出在面VOC上,给进一步定量创造得天独厚的条件。
      特征Ⅱ指出,如果二面角α-l-β的棱l垂直某一平面γ与α、β的交线,而交线所成的角就是α-l-β的平面角,如图1。
      
      由此可见,二面角的平面角的定位可以考虑找“垂平面”。
      例2.矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BC-D的大小。
      
      这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后“变”与“不变”。结果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA、OE与BD的垂直关系不变。但OA与OE此时变成相交两线段并确定一平面,此平面必与棱垂直。由特征Ⅱ可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角。A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上所以E点就是A′,这样的定位给下面的定量提供了优质服务。通过对例2的定性分析、定位作图和定量计算,特征Ⅱ从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角。“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量。
      特征Ⅲ显示,如果二面角α-l-β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理逆定理可知OB⊥l,此时,∠AOB就是二面角α-l-β的平面角,如图3:
      由此可见,地面角的平面角的定位可以找“垂线段”。

    推荐访问:平面角 立体几何 定位

    • 文档大全
    • 故事大全
    • 优美句子
    • 范文
    • 美文
    • 散文
    • 小说文章